A Preliminary Study of Space-time Finite Element Eddy-current Analysis

Junichi Niimi¹, Takeshi Mifune, Tetsuji Matsuo, Member, IEEE

¹Graduate school of Engineering, Kyoto University, niimi.junichi.57e@st.kyoto-u.ac.jp

A space-time finite element method is developed for the eddy-current analysis that can handle temporallyvariant spatial finite elements arising in the analysis of moving objects. The vector potentials allocated on space-time finite elements naturally expresses the speed electromotive force. A Space-time triangular prism finite element is examined to represent the eddy-current field in space-time successfully.

Index Terms-Eddy current, space-time finite element, speed electromotive force

I. INTRODUCTION

The time is usually formulated independently of the space in the finite element electromagnetic field analysis. To obtain the time evolution of electromagnetic field, a sequential scheme is generally used in a step-by-step manner with a uniform time-step. However, it is possible to handle the space and time in a unified manner in the Maxwell equations. This means that the computational finite-elements can be generated in the space-time to handle temporally-variant spatial finite elements arising in the analysis of moving objects.

Previous studies [1]-[3] have successfully introduced a temporal convolution for the symmetric formulation of space-time finite-element (FE) eddy-current analysis. However, the temporal convolution was only applied to the temporally uniform space-time elements and its application to the analysis of moving objects is not straightforward.

This paper proposes a Galerkin type space-time FE analysis to develop general polygon-type finite elements such as space-time parallelepiped and prism elements, where the speed electromotive force is naturally introduced.

II. SPACE-TIME ALLOCATION OF VECTOR POTENTIAL

For example, the vector potential \boldsymbol{A} is allocated on the edges of parallelogram space-time element as in Fig. 1, where the two edges are slanted as $(v\Delta t, \Delta t)$. The

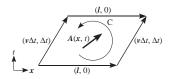


Fig.1 parallelogram space-time element

contour integral of \boldsymbol{A} along the parallelogram is given as

$$\sum_{\mathbf{C}} \mathbf{A} \cdot \mathbf{ds} = (\mathbf{v}\Delta t) \cdot [\mathbf{A}(\mathbf{x} + \frac{\mathbf{l}}{2}, t) - \mathbf{A}(\mathbf{x} - \frac{\mathbf{l}}{2}, t)] \\ -\mathbf{l} \cdot [\mathbf{A}(\mathbf{x} + \frac{\mathbf{v}\Delta t}{2}, t + \frac{\Delta t}{2}) - \mathbf{A}(\mathbf{x} - \frac{\mathbf{v}\Delta t}{2}, t - \frac{\Delta t}{2})] \\ \approx \mathbf{v} \cdot (\mathbf{l} \cdot \nabla) \mathbf{A} \Delta t - \mathbf{l} \cdot [\frac{\partial \mathbf{A}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{A}] \Delta t \\ = [\mathbf{v} \cdot (\mathbf{l} \cdot \nabla) - \mathbf{l} \cdot (\mathbf{v} \cdot \nabla)] \mathbf{A} \Delta t - \Delta t \ \mathbf{l} \cdot \frac{\partial \mathbf{A}}{\partial t} \\ = [(\mathbf{l} \times \mathbf{v}) \cdot \operatorname{curl} \mathbf{A} - \mathbf{l} \cdot \frac{\partial \mathbf{A}}{\partial t}] \Delta t \\ = \mathbf{l} \cdot [\mathbf{v} \times \operatorname{curl} \mathbf{A} - \frac{\partial \mathbf{A}}{\partial t}] \Delta t \\ = \mathbf{l} \cdot (\mathbf{E} + \mathbf{v} \times \mathbf{B}) \Delta t$$
(1)

Thus, the speed electromotive force is naturally introduced, where the $\phi=0$ gauge is used for simplicity. In the 4D space-time, the electromagnetic four-potential $(A, \phi/c)$ is defined. The contour integral of four-potential is similarly yields the speed electromotive force.

III. Space-Time Finite Elements

Space-time finite elements can be constructed in a similar way to conventional spatial finite-elements. For example, the triangular prism element shown in Fig. 2 is examined in this study. The scalar interpolation function N_1 for the node 1 given as

$$N_1 = \frac{1}{2V}(a_1 + b_1 x + c_1 t)(y_2 - y)$$
(2)

where V is the volume of element; a_1 , b_1 and c_1 are

$$a_1 = x_2 t_3 - x_3 t_2$$
 $b_1 = t_2 - t_3$ $c_1 = x_3 - x_2$ (3)

where x_i and t_i are coordinate of node i.

IV. Formulation of Space-Time Finite Element Method

This article examines xyt-3D space-time eddy-current

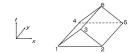


Fig.2 Triangular prism element

field described as

$$\frac{\partial}{\partial x}(\nu\frac{\partial A}{\partial x}) + \frac{\partial}{\partial y}(\nu\frac{\partial A}{\partial y}) = -J_0 + \sigma\frac{\partial A}{\partial t}$$
(4)

where A is the z-component of vector potential, J_0 is the imposed current density and ν is the reluctivity. The Galerkin finite-element method (FEM) is used to derive the weak form. The interpolation function N_i is multiplied to (4) as the weighting function as

$$\iiint_{\Omega} \left(\frac{\partial}{\partial x} \left(\nu \frac{\partial A}{\partial x}\right) N_i + \frac{\partial}{\partial y} \left(\nu \frac{\partial A}{\partial y}\right) N_i \right) dx dy dt$$

$$= \iiint_{\Omega} \sigma \frac{\partial A}{\partial t} N_i dx dy dt - \iiint_{\Omega} J_0 N_i dx dy dt .$$
(5)

Integrating the left hand side by parts, (6) is obtained.

$$(\text{left hand side}) = \iint \nu N_i \left(\frac{\partial A}{\partial x} dy - \frac{\partial A}{\partial y} dx\right) dt - \iiint_{\Omega} \left(\nu \frac{\partial A}{\partial x} \frac{\partial N_i}{\partial x} + \nu \frac{\partial A}{\partial y} \frac{\partial N_i}{\partial y}\right) dx dy dt$$
(6)

The natural boundary condition is assumed to eliminate this term. Thus, the weak form (7) is obtained.

$$\iiint_{\Omega} \left(\nu \frac{\partial A}{\partial x} \frac{\partial N_i}{\partial x} + \nu \frac{\partial A}{\partial y} \frac{\partial N_i}{\partial y} + \sigma \frac{\partial A}{\partial t} N_i \right) \mathrm{d}x \mathrm{d}y \mathrm{d}t \\
= \iiint_{\Omega} J N_i \mathrm{d}x \mathrm{d}y \mathrm{d}t$$
(7)

The linear system of equations (8) is obtained from (7)

$$([K] + [C])\{A\} = \{F\}$$
(8)

where

$$K_{ij} = \iiint_{\Omega} \left(\nu \frac{\partial N_i}{\partial x} \frac{\partial N_j}{\partial x} + \nu \frac{\partial N_i}{\partial y} \frac{\partial N_j}{\partial y} \right) \mathrm{d}x \mathrm{d}y \mathrm{d}t \quad (9)$$

$$C_{ij} = \iiint_{\Omega} (\sigma N_i \frac{\partial N_j}{\partial t}) \mathrm{d}x \mathrm{d}y \mathrm{d}t \tag{10}$$

$$F_i = \iiint_{\Omega} (JN_i) \mathrm{d}x \mathrm{d}y \mathrm{d}t \;. \tag{11}$$

V. Analysis Result of Eddy-Current Field

The iron-cored inductor shown in Fig. 3 is analyzed by the 3D space-time FEM, where the conductivity and relative permeability of iron core are 10^6 S/m and 5000, and the excitation frequency is 50 Hz. The natural boundary condition is imposed at the symmetric boundaries, and A = 0 at the outer boundaries.

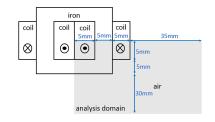


Fig.3 Iron-cored inductor

Fig. 4 shows magnetic flux lines obtained by the conventional FEM and by the space-time FEM using the triangular prism element. Both results agree. The spacetime FE analysis of moving objects will be discussed in the full paper.

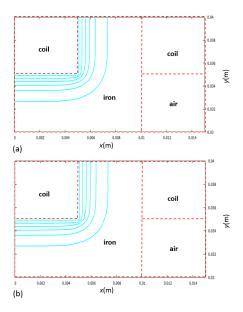


Fig.4 magnetic flux lines: (a) obtained by the conventional FEM, and (b) obtained by the space-time FEM using the triangular prism element

VI. References

- A.J. Butler and Z.J. Cendes, "Space-time finite elements derived by convolution for the efficient solution of transient eddy current problems," IEEE Trans. Magn., vol. 24, pp. 2688-2690, Nov. 1988.
- [2] T. Renyuan, L. Feng, L. Yan and C. Xing, "Analysis of transient non-Linear eddy current fields by space-time finite element method," IEEE Trans. Magn., vol. 34, pp. 2577-2580, Sept. 1998.
- [3] S. Gyimóthy, A. Vágvölgyi, and I. Sebestyén, "Application of optimally distorted finite elements for field calculation problems of electromagnetism," IEEE Trans. Magn., vol. 38, pp. 365-368, March 2002.