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A space-time finite element method is developed for the eddy-current analysis that can handle temporally-
variant spatial finite elements arising in the analysis of moving objects. The vector potentials allocated on
space-time finite elements naturally expresses the speed electromotive force. A Space-time triangular prism
finite element is examined to represent the eddy-current field in space-time successfully.
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I．Introduction

The time is usually formulated independently of the

space in the finite element electromagnetic field analysis.

To obtain the time evolution of electromagnetic field,

a sequential scheme is generally used in a step-by-step

manner with a uniform time-step. However, it is possi-

ble to handle the space and time in a unified manner in

the Maxwell equations. This means that the computa-

tional finite-elements can be generated in the space-time

to handle temporally-variant spatial finite elements aris-

ing in the analysis of moving objects.

Previous studies [1]-[3] have successfully introduced

a temporal convolution for the symmetric formulation

of space-time finite-element (FE) eddy-current analysis.

However, the temporal convolution was only applied to

the temporally uniform space-time elements and its ap-

plication to the analysis of moving objects is not straight-

forward.

This paper proposes a Galerkin type space-time FE

analysis to develop general polygon-type finite elements

such as space-time parallelepiped and prism elements,

where the speed electromotive force is naturally intro-

duced.

II. Space-Time Allocation of Vector Potential

For example, the vector potential A is allocated on

the edges of parallelogram space-time element as in Fig.

1, where the two edges are slanted as (v∆t,∆t). The
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Fig.1 parallelogram space-time element

contour integral of A along the parallelogram is given as∮
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Thus, the speed electromotive force is naturally intro-

duced, where the ϕ=0 gauge is used for simplicity. In

the 4D space-time, the electromagnetic four-potential

(A,ϕ/c) is defined. The contour integral of four-potential

is similarly yields the speed electromotive force.

III．Space-Time Finite Elements

Space-time finite elements can be constructed in a sim-

ilar way to conventional spatial finite-elements. For ex-

ample, the triangular prism element shown in Fig. 2 is

examined in this study. The scalar interpolation function

N1 for the node 1 given as

N1 =
1

2V
(a1 + b1x+ c1t)(y2 − y) (2)

where V is the volume of element; a1, b1 and c1 are

a1 = x2t3 − x3t2 b1 = t2 − t3 c1 = x3 − x2 (3)

where xi and ti are coordinate of node i.

IV．Formulation of Space-Time Finite Element

Method

This article examines xyt-3D space-time eddy-current



Fig.2 Triangular prism element

field described as
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where A is the z-component of vector potential, J0 is the

imposed current density and ν is the reluctivity. The

Galerkin finite-element method (FEM) is used to derive

the weak form. The interpolation function Ni is multi-

plied to (4) as the weighting function as∫∫∫
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Integrating the left hand side by parts, (6) is obtained.

（left hand side）＝
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The natural boundary condition is assumed to eliminate

this term. Thus, the weak form (7) is obtained.∫∫∫
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The linear system of equations (8) is obtained from (7)

([K] + [C]){A} = {F} (8)

where
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V．Analysis Result of Eddy-Current Field

The iron-cored inductor shown in Fig. 3 is analyzed by

the 3D space-time FEM, where the conductivity and rel-

ative permeability of iron core are 106 S/m and 5000, and

the excitation frequency is 50 Hz. The natural boundary

condition is imposed at the symmetric boundaries, and

A = 0 at the outer boundaries.

Fig.3 Iron-cored inductor

Fig. 4 shows magnetic flux lines obtained by the con-

ventional FEM and by the space-time FEM using the

triangular prism element. Both results agree. The space-

time FE analysis of moving objects will be discussed in

the full paper.

Fig.4 magnetic flux lines: (a) obtained by the conven-

tional FEM, and (b) obtained by the space-time FEM us-

ing the triangular prism element
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